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The increasing sophistication of optical component and detector technol-

ogy, combined with rapidly expanding surveillance requirements, suggests that

infrared-based sensor systems may soon provide additional capability to the

Navy in Fleet defense and intelligence gathering applications. The Defense

Advanced Research Projects Agency (DARPA) has been pursuing the extension of

Department of Defense surveillance capabilities during the past few years

through the HI-resolution Calibrated Airborne Measurements (HI-CAMP) and TEAL

RUBY programs, and these technologies are presently available to help assess

the role of infrared (IR) sensors in the aforementioned roles. With the joint

support of DARPA and the Naval Electronics System Command (Code 615), the

Naval Ocean System Center (NOSC), her sister Centers, and the Naval Research

Laboratory are currently developing a Navy Infrared Surveillance Data Base for

assessing the utility of Il technology in Fleet defense, as well as other

important Navy applications. This is a multifaceted program involving back-

ground clutter and target signature measurements, IR phenomenology modeling,

and digital image processing.

An element of the Navy program involves the use of the TEAL RUBY

Experitent to extract data relevant to Navy IR surveillance needs. These

needs include weak and stationary targets. Notably, the TEAL RUBY sensor in

its stariag mode is severely limited for stationary target detection. The

sensor suffers from high levels of pattern noise (on the order uf 2 percent)

even after calibration. Thu-s, techniques must be developed in the near future

tc reduced image clutter and system noise, if Navy objectives for the TEAL

RUBY Experiment are to be fulfilled. Accordingly, a task was initiated this 1.es

iofiscl yar t NOC t deelo "opimu" iageprocessing strategies for



detecting stationary and slowly moving, weak targets under various background

conditions. This report outlines the interim results on this effort.

Specifically, a mathematical approach for performing maximum likelihood

detection of slowly moving/stationary targets from multispectral imagery is

described, and its underlying assumptions are presented anc discussed.

Example DAEDALUS imagery is used to evaltiate one of these assumptions in

detail, and these results are presented.
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1. INTRODUCTION

The increasing sophistication of optical component and detector

technologies, combined with rapidly expanding remote sensing requirements, has

sparked a commensurate development in exotic signal processing techniques for

extracting desired information out of highly complex visible and infrared

imagery1 . At presen4 . the most pressing problem in remote sensing for

surveillance is underresolved, weak target detection in highly spatially

structured optical imagery. The accepted approach to the extraction of

targets in this case is to temporally band-pass the data through either an

analog or digital filter, e.g., frame-to-frame subtraction. This technique is

known to produce excellent results in the target signature. However, if the

object of interest is stationary, or slowly moving, other means must be

employed to identify and localize the target.

Several researchecs have proposed using multispectral imagery as a

vehicle for stationary target detection. For example, Barry et al. (1977)

have used a recursive state space filtering technique with multispectral

images to reduce background clutter, hence improving target detectability

(Barry et al., 1977a & b). More recently, targalit et -1. (1984) developed a

maxipaum likelihood (ML) approach to nuamoving -esolved/partially resolved

target extraction from correlated images. Specific4lly, they were able to

detect known targets in clutter by performing an "optimum" weighted difference

of locally demeaned 2 , correlated multichannel subimages whose window dimen-

sions are on the order of the target site (Hargalit et al., 1984).

1 The following references provide excellent reviews of current imaqe

processing trends and illustrate their utility for enhancing the inherent
information content found in remoLely stnsed images such as thos- taken by
LNDSAT and NIMBUS-7 satellites: Andrews and Nuit, 1972, Jerlov and Nielsen,
1974; toik, 1978, 1979, znd 1980; and Rosenield and Kak, !982.
2 In .his report, demeaned refers to the removal of a local wean intensity

from each pixel of an image.
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This paper shows that the technique of Margalit et al. (1984) can be

extended to the underresolved, weak target case by restructuring the basic

problem development in terms of the inherent two-dimensional aspects found in

most remotely sensed images. In particular, we wili present this restructured

development and outline the research required to extend its application to an

optimum processing approach for detecting stationary or slowly moving targets

in clutter.

2. DUAL-CHAMNL TARGET DETECTION

A digital optical image is a two-dimensional array of numbers created by

an optical sensor remotely sampling a continuous scene. The most common way

of producing this type of data set is to optically image a scene through a

lens system onto a photodetector array. The electrical signal generated by

this detector array is then sent through an analog-to-digital converter, and

the result is either image-processed immediately, or stored in a nonvolatile

medium like magnetic tape for future aualysis. The digital signal's most

important property is that each generated element is always greater than, or

equal to, zero. In this section, we will show hew two specifically chosen

digital images caoi be interacted to yield an optimum detection of an unknown

signal, 3nd we will dis;uss the necessary conditions to do so. For this

development, we will assume the two images have dimensxons equal to

(3N+I)x(3N÷I), WiLh the unknown target potentially located within the center

(NI)x(N+I) portioas of these arrays. As we will see later, our *1l. approar:

will reduce to working solely with iE4l)x(N+l) imagery, eliminating the need

to waste a significant portion of any image array in future image statistics

calculations.
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L.vasider two image arrays f and g that contain two registered, cor-

related scenes, respectively. Assume that f may or may not contain an addi-

tional intensity distribution S, where s is not strong enough to alter f's

inherent statistics but is above any quantization or other system-level, noise.

Arrays f and s do not necessarily have the same dimensions. The intensity

array s represents the signal we wish to extract from the background clutter

found in f. Physically, these images could be produced by either a multi-

spectral scanning array sensor, a dual-channel staring mosaic array sensor, or

a normal array sensor sampled at two different times. We begin our analysis

by transforming each centered (N+1)x(N+l) subimage of f and g into their

lexicographic form. Specifically, we write

f(NN)

f(NN+1)

- f(N+1,N) (1a)

f (ZN,2.N)

g(N,N)
g(N,N+I)

-= sC+l ( ib)

Since ve are dealing with target detectiont from multiple observations, these

vectors calk nov be merged into multivariate fom

f
h - (2)

to facilitate further analysis.
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lML signal processing is optimum when one is dealing with noise (i.e.,

background clutter), which is described by stationary, white Gaussian

* statistics. Unfortunately, most optical imagery is quasistationary, colored,

and non-Gaussian. This situation can be remedied to a certain degree by

subtracting a local neighborhood mean from each of the elements found in h

(Margalit et al., 1984; Hunt & Cannon, 1976). We shall discuss this point in

more detail in the following section and ask the reader to assume for the

present that one can construct a difference vector (h-h') that has a multi-

variate normal probability density function with a zero mean and & covariance

R. The covariance matrix R is described by the relation

nuuR • =[h-'hh)T] (3)
*

and is calculated using a (N+l)x(N+I) window. Specifically, the elements of R

would be calculated as follows: retuining to the original two images, one

would derive a local neighborhood mean for each pixel contained in f and g and

form two new image arrays given by (f-f') and (g-g'). Here, the primed

letters indicate the estimated mean array for its associated image.

Mathematically, they can be written as
'4

-1 Ell]

* and

for the two images f and g, respectively. In the above two equations, El...I

denotes the expectation or expected value operator, which will not, in

general, result in constant valued vectoes. Given these two new images, one

can then calc,,!ate the autocovariance matrices for (f-f') and (g-g'), as well

4



as their covariance matrix for the center (N+1))C(N+l) portions of both arrays.

Since these calculations involve summuing products of pixel va'lues over

(N+1)x(N+1) windows, this explains our initial requirement of having overall

image dimensions of (3N+1)'x(3N+1). The first row of R is equal to

R(O,k) = E((f(N,N)-f'(N,N))x(f(N,N+k)-f'(N,N+k))I

R(O,N+1+k) = EII(f(N,N)-f'(N,N))x(f(N+1,N+k)-f'(N+1,N+k))I

R(O,2N+l+k) = E[(f(N,N)-f'(N,N))x(f(N+2,N+k)-f'(N+2,N+k))1I

etc.

R(O,(N-I)xN+l+k) =Ef(f(N,N)-f'(N,N))x(f(2N,Ni-k).-f'(2NN+k))]

for k between 0 and N. In these expressions, we have

I Y. (f(m+i},n+j)-f'(m+i~a+j))x(f(kti,l+j)-f'(k+i,l+j)) .(4)

i j

The second row of R is given by

* R(il,2N-tl+k) Ef(f(N,N+1)*-V'(N,N+l))x(f(N+2,N+k)-f'(N+2,N+k)))

etc.

* ~for k between 4) and N. Here

ii

This procedt're continues until all the elements of the (f-Cf) portion of

(h-h') have been used. This procedure continues until all thbe elements of the
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(g-g') portion of (h-h') have been used. One of the unexpected results

Margalit et al. (1984) found from the subtraction of local neighborhood means

from images was the transformation of the image vectors into white statistical

processes (Margalit et al., 1984). That is, (f-f') and (g-g') have a

Kronecker delta function autocovariance. This implies the covariance matrix

reduces to a tridiagonal, symmetric matrix where the major diagonal terms are

the scene variances and the minor diagonal terms are the aligned pixel

ccvariances between the two scepe-. If the acenre variances are also slw-

varying, this matrix fuither reduces to block Toeplitz matrix form. Let us

now develup the maxirum likelihood ratio for the target deLecion process.

Let H0 represent the hypothesis that no signal s" is present in (h-h').

The probability density function in this =ase is given by

PoNh) exPf J T (hh,')) (6)
(2n) 2N1det[RE

where detf..] denotes the determinant qf the enclosed matrix and R is the

inverse of the covariance matrix R described above.

Let iI be the hypothesis that s' is present in the vector (h-h'). Then

the probability density function for this situatioo will be of the form

P(-,-I- I exp{-(h-h'+S')T R-I (h-h'+s')l (7)1(2 A) 2N+1det[R)

* with s' defined as

s (N, N)

st s(2N,2N)
.4 - 0

0
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Taking the ratio of these last two equations, we are able to formulate the

best test for establishing the presence of the signal s', given a fixed false

ala'm protability. This test is known as the likelihood ratio test and is

give, by

a.- PI(L)/PW.• > = K ; for s' being present in (h-h')

< K ; for s' being absent in (h-h')

where r% is a conscant to be determined. Taking the logarithm of %, we obtain

-(h-h'+s')T R-I (h-h'+s') + (h-h'%T. R"1 (h-h' K';; signal absent (8)
-~~~ W z; signal present

as our statistical test. For the .emainder of this development, let us assume

the covariance m!trix R is of block T: zplitz fori- and the signal is totally

confined to a single pixel. This can be done without loss of generality and

will greatly simplify the discussion to come.

Under the above asaumption of a slowly varying covariance matrix, we can

easily show that the inverse coviriLance matrix R is Xivrn by

-I

-' 0 . . .. . 0 R, 0 - • • ' 0

Sfg fgf

0 R 0 .. . .... . 0 .. .( 0
- fo ' 0.......'U

0 ... .... R' 0 0......... •

fg

where

7



aO(• 2 (10)

ft _-- 2(1-p2)

S' = 1

fg af2(1P•)

"In these equations, Of 2 and a 2 denote the scene variances of (f-f') and

(8-1'), respectively, and p the correlation between the two images. If the

signal is located in pixel (M0 ,N0 ) where N < M0 ,N0 < 2N, the left hand side

of equation 8 becomes

(f-f'*s')2 2p(f-f'*s')(I-f') 4-02 (f-f,)2

(if 2 (1-p 2) afa 9(1-p 2 ) a ( 1-p2) af 2 (1-P2)

2p(f-f')(S-f') 02(8-f,)2

+2 2 2Ufa g(1-PG) 2 (1-p)

2 2 2

of(1 p2) 0fa8 (1-p2 a 8 (1-p21

i (-fl) 20(f-f')(g-f') p2(8-f') 2

2 + -. (11)
af(1-p2 ofo8(1-p2) a 92(1-p2)

f -
< k'( )

af 2(1-p2 Of 2(1-p2 > k2

which reduces to

o.8

• _"1=



(-ls Paf (gg 22

a I

5=tI' <k (13)

of2(l1P2) of2(lp2) > k't + 1

under optimum subtraction. From this last equation we see that the identifi-

cation and localization of a target signature within any image is totally

dependent on the effective signal-to-noise ratio of the target in the

weighted-difference image channel This is the type of detection criterion

one usually finds for ML signal detections. However, there is another aspect

to this target detection scheme one needs to consider. Let us be more

specific.

The numerator of the first term of equation 13 can be interpreted as the

apparent contrast of the target in the (f-f') channel using an estimated mean

from the (g-g') channel. The ratio of the individual scene variances is the

required scene weighting for optimum image subtraction. The denominator is

the reduced scene variance obtained from dual-channel weighted differencing.

Clearly, this last factor is very low for highly correlated channels and

results in a potentially large si&nal-to-clutter/ioise ratio in this case.

However, it may not increase target detectability. The reason is an aspect of

local neighborhood domeaning, which was not addressed by iargalit et al.

(1984) and must hold if low false-alarm rates are desired. Specifically, the

loco! oeighborhood meat, estimate must be chosen to minimiae the difference

b•.w itself and the pzxel it is demeaning, while minimally affecting the

target signature. In other words, the second-order moments of (I-fV) and

(g-g') must be minimized, in addition to their third-order mwients, if one

expects to optimally differentiate weak signals from residual clutter il the

dual-channel weighted-difference channel.



3. KEY MAXIL.1;)M LIKELIHOOD PROCESSING ASSUMPTIONS

In the previous section, we found that a ML t~arget detection technique

was applicable to dual-channel imagery if certain fundamental noise charac-

teristics were present. Specifically, we require the loca]lly demeaned back-

ground clutter to be

a. Stationary

b. White

C. Gaussian distributed

d. Very close to zero variance.

A

These conditions are ess,2ntial to successful implementation of the HL method

for underresolved, weak target localization in remotely sensed data.

Ancillary to these points is the assumption that the multispectral images

involved in the processing are registered perfectly. In this section, we

shall discuss the-se points in more detail, focusing on how they pertain to

real imagery.

From thepstrom (1968), we know that M L detection of known signals in

clutter is an optimum process when the noise involved is stationary and white

Gaussian. In addition, the previous mathematical development illustrates that

it is highly desirable for the two locally demeaned images to have as small a

standard deviation as possible to reduce potential false alarms. In contrast,

raw optical imagery rarely has these properties and must be modified if one

wishes to apply the s L approach to target detection. tHnt and Cannon (1976)

iuggested thnat an image can be transformed into the desired statistical state

s dy the -.9riate demeaning process. They showed for one particular image

thit a heighborhood average estimate of a local pixel mean could be subtracted

10



from each individual pixel to yield a nearly Gaussian probability density

function for the resultant scene. However, the exact pixel weighting criteria

for optimum mean estimations was not discussed; therefore, only a pixel

blurring estimation was obtained.

Margalit et al. (1984) used an equal-weight neighborhood average and

varied array size, i.e., 3 by 3, 5 by 5, 7 by 7, etc., to yield the most

Gaussian fit. The criterion used was minimization of the absolute value of

the third-order moment of the demeaned image. No specific numbers for this

moment were cited in the reference, but a number of statistical tests were

used to establish normality. Their conclusion from this point of analysis was

the equal-weight neighborhood average estimation yielded nearly, but not

totally, Gaussian distributions. In fact, the authors suggested that the

resulting intensity histograms were more closely fit by the weighted sum of

Gaussian and uniform distributions. Let us see what type of third-moment

minimization occurs when an equal-weight neighborhood average mean estimation

4s applied to some typical infrared imagery.

Figure 13 shows an infrared image of downtown San Jose and its associated

intensity histogrAm. These data were obtained with a DAEDALUS thermatic

mapper housed in a National Aeronautics and Space Administration U-2 aircraft

by using eight-bit quantization. The pixel footprint size is of the order of

30 by 30 meters. Table I gives the first four moments, the skewness, and the

kurtusis of the scene's intensity statistics, as well ai; the center 11 by 11

portion of the autocovariance matrix for the 482- by 482-pixel image. In this

3 Because of the large number of figures and tables in this report relative to
the amount of text, these illustrations are placed at the end of the report
beginning on page 15.

11



table, each element of the autocovariance matrix has been multiplied by 100.

The histogram plot and table 1 show that the scene statistics are non-

Gaussiau. The intensity statistics are skewed and possess a large, negative

third-order moment.

Figures 2 through 7 depict the resulting scenes and associated intensity

histograms for locally demeaned versions of figure 1 using window sizes of 3

by 3, 5 by 5, 7 by 7, 9 by 9, 11 by 11, and 13 by 13, respectively. Tables 2

through 7 summarize the key image statistics of these figures. Comparisons of

the figures and tables show that equal-weight mean estimation produces imagery

that is smaller in scene variance and nearly white Gaussian. That is, each of

the demeaned images have first-order moments cloý',e to zero, reduced variance,

delta-function like autocovariances, and intensity distributions that appear

symmetrical in shape. These properties degrade wit2" increasing window size.

The degradation is a consequence of the larger window sizes performing a poor

quality, low-pass filtering estimate of the local mea,. They are actually

estimating a more global-like image mean. In any event, the third-order

moment never really approaches a value close to zero for any of these windows,

as required for a Gaussian probability density function. Based on the

Margalit et al. (1984) criteria: the 3- by 3-averaging window would be

selected as the optimum processing window. This cn !be s eea b'y coparing the

third-order ivA•-eats found in tables 2 through 7 and by observ~ng that the

absolute value of -23.68 in table 2 is smallest. 1lowever, this is still a

large value and suggests that the 3 by 3 window does not yield -'s good a

Gaussian PDF as one would like for optimum HL processing.

Figure 8 is a DAEDALUS image of Los Gatos and its surrounding mca1ntain

area. Its inteusity frequency distribution is clearly more non-Gaussian than

the San Jose scene. Table 8 depicts the key im.'ge statistics for the image

12



and the center 11 by 11 portion of its autocovariance matrix. Figures 9

through 11 and the associated intensity histograms are the resulting images

generated by equal-weight mean estimation subtraction using 3- by 3-, 5- bY

5-, and 7- by 7-processing windows, respectively. Tables 9 through Al

summarize the key image statistics of these figures, respectively. As before,

the resulting images appear to possess nearly Gaussian intensity distribu-

tions, which degrade with increasing window size. However, the second- and

third-order moments are now both nonzero positive in all cases. (Recall for

the San Jose image that the third-order moment was nonzero negative for the

five processing windows used). Hence, the application of ML target detection

to the optimum demeaned Los Gatos image (again created by a 3- by 3-processing

window) will suffer from the same nonoptimum conditions we found for the San

Jose scene.

Another key assumption in the previous 1L developrient is the requirement

that two registered images be available for processing. Optical sensor

systems are not able to stare at a point perfectly, but have long- and

short-term drifts, as well as a jitter, affecting the scene positioning from

one instant to another. The impact of any misregistration between the two

images is presently not known.

4. TOPICS FOR FURTHER INVESTIGATION

Besides the points discussed in the previous section, two additioaal

aceas remain to be investigated to clearly establisL the optimum application

of ML detection to optical imagery. One is to determine the best low-pass

filter for local neighborhood aean estimation; the other is the effect of

scene misregistration on ML image processing. For the former, we propose

13



using least mean-square estimation to determine the best convolutional filter

for approximating the local mean about any one pixel. This will be done

theoretically, assuming typical image autocovariance functions, and experi-

mentally with real visible and infrared data. Comparisons between the two

approaches will be made. To assess the impact of scene misre~isLration on ML

image processing, we propo3e a theoretical investigation of this effect using

known image autocovariance functions and various means of image sampling.

Computer simulations will be used to verify results.

In addition to these areas, we suggest that the technique described in

section 2 be extended to more than two spectral channels to determine if any

additicnal improvement can be gained and, if so, under what conditions.

Example inages from the LANDSAT and DAEDALUS can be used to verify these

projections

14
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Table 1. Key statistical parameters for the original image of
downtown San Jose.

First-order moment (mean) = 86.2607

Second-order moment (variance) = 111.5682

Third-order moment = -597.0149

Fourth-order moment = 43634.3333

Skewness = -0.5066

KurtosIs = 3.5054

14.26 27 29 31 35 37 33 31 29 28 26

26 28 30 32 36 38 35 32 30 29 27

27 30 32 35 41 45 40 35 32 30 28

29 32 34 39 46 52 46 39 35 32 29

29 33 36 41 53 67 55 42 36 33 29

34 38 43 50 73 100 73 50 43 38 33

* 30 33 37 42 55 67 53 41 36 32 29

30 33 35 39 46 53 46 39 34 31 28

29 31 33 36 40 45 41 35 32 30 27

28 30 31 33 35 39 36 32 30 28 26

27 29 30 32 34 37 35 31 29 27 26

Center lPXl1 Autocovariance matrix (xlO0)
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Table 2. Key statistical p.rameters for the 3- by 3-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.4461

Second-order moment (variance) = 31.9559

Third-order moment = -23.6814

Fourth-order moment = 3697.4117

Skewness = -0.1310

Kurtosis = 3.6207

2 1 2 2 5 9 2 3 2 2 1

0 0 -1 -4 -5 0 -6 -2 -1 0 -1

-1 1 0 -1 0 8 -2 -1 -1 1 0

2 3 3 3 0 11 -2 2 4 4 1

-7 -7 -8 -19 -36 -8 -30 -19 -9 -7 -7

8 13 16 9 29 100 29 9 16 13 9

-7 -7 -9 -19 -30 -8 -36 -19 -8 -7 -7

1 4 4 2 -2 11 0 3 3 3 2

0 1 -1 -1 -2 8 0 -1 0 1 -1

-1 0 -1 -2 -6 0 -5 -4 -1 -1 -1

1 2 2 3 2 9 5 2 2 2 2

Canter liXIl Autocovariance matrix (x100)
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Table 3. Key statistical parameters for the 5- by 5-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.4849

Second-order moment (variance) = 48.4504

Third-order moment = -83.6112

Fourth-order moment = 8462.3295

Skewness = -0.2479

Kurtosis = 3.6049

2 2 0 -1 4 8 1 -1 1 2 1

1 1 -1 -4 0 5 -2 -4 0 1 0

0 2 -1 -6 1 8 -2 -7 -1 2 1

-2 -1 -7 -18 -11 1 -13 -16 -6 0 -2

-2 0 -7 -21 -6 25 -1 -19 -7 0 -2

7 12 7 -2 39 100 39 -2 8 12 7

-2 0 -7 -19 -1 25 -6 -21 -7 0 -2

-2 0 -6 -19 -13 1 -11 -18 -7 -1 -2

1 2 -1 -7 -2 8 1 -6 -1 2 0

0 1 0 -4 -2 5 0 -5 -1 1 0

1 2 1 -1 1 8 5 -1 0 2 2

Center lIxIl Autocovariance matrix (xlO0)
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Table 4. Key statistical parameters for the 7- by 7-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.4958

Second-order moment (variance) = 57.2018

Third-order moment = -124.9375

Fourth-order moment = 11692.8372

Skewness = -0.2887

Kurtosis = 3.5735

2 0 -2 0 5 9 2 -1 -1 2 2

1 -1 -5 -5 0 5 -2 -6 -5 0 1

-2 -5 -12 -13 -5 2 -7 -14 -12 -4 -1

-1 -4 -13 -12 -1 11 -2 -13 -12 -3 -1

-1 -4 -12 -11 9 36 13 -10 -11 -3 -1

7 7 1 5 48 100 48 5 1 7 7

0 -3 -11 -10 13 36 9 -11 -12 -3 -1

-1 -3 -12 -13 -2 11 -1 -12 -13 -4 -1

-1 -4 -13 -14 -7 2 -5 -13 -12 -5 -2

1 -1 -5 -6 -2 5 0 -5 -5 -1 1

2 2 -1 -1 2 9 5 0 -2 1 2

Center lIxIl Autocovariance matrix (xlO0)
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Table 5. Key statistical parameters for the 9- by 9-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.5004

Second-order moment (variance) = 63.0182

Third-order moment = -151.0908

Fourth-order moment = 14120.6381

Skewness = -0.3020

Kurtosis = 3.5556

-1 -3 -3 -1 4 7 1 -2 -3 -2 0

-4 -9 -10 -9 -3 0 -6 -9 -10 -8 -4

-6 -10 -11 -8 0 7 -2 -9 -11 -9 -4

-4 -9 -10 -4 7 17 6 -5 -9 -8 -4

-4 -8 -8 -2 16 41 20 -2 -8 -7 -3

3 2 4 13 53 100 53 13 4 2 4

-3 -8 -8 -2 20 41 16 -2 -8 -8 -4

-4 -8 -9 -5 6 17 7 -4 -10 -9 -4

-4 -9 -11 -9 -2 7 0 -8 -11 -10 -5

-4 -8 -11 -9 -6 0 -4 -9 -10 -9 -5

0 -2 -4 -2 1 7 4 -1 3 -3 0

Center lIxil Autocovariance matrix (x1O0)
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Table 6. Key statistical parameters for the 11- by 11-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.5023

Second-order moment (variance) = 67.0573

Third-order moment = -173.0976

Fourth-order moment = 15981.7429

Skewness = -0.3152

Kurtosis = 3.5541

-7 -8 -7 -4 1 4 -2 -5 -7 -7 -0

-9 -10 -9 -6 -1 3 -3 -7 -8 -9 -8

-9 -9 -8 -4 5 11 3 -4 -8 -8 -7

-8 -8 -5 1 12 22 11 1 -4 -6 -7

-7 -6 -3 4 22 45 25 4 -3 -6 -7

-1 2 7 17 55 100 55 17 8 3 0

-7 -6 -3 4 25 45 22 4 -3 -6 -7

-7 -7 -5 0 11 22 12 1 -5 -8 -8

-7 -8 -8 -4 3 11 5 -4 -8 -9 -9

-8 -9 -9 -7 -3 3 -1 -6 -9 -10 -9

-6 -7 -7 -5 -2 4 1 -4 17 -8 -6

Center lIxIl Autocovariance matrix (x1O0)
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Table 7. Key statistical parameters for the 13- by 13-demeaned image
of downtown San Jose.

First-order moment (mean) = 0.5023

Second-order moment (variance) = 70.6836

Third-order moment = -193.7154

Fourth-order moment = 17664.4662

Skewness = -0.3259

Kurtosis = 3.5355

-8 -7 -6 -3 2 5 0 -4 -6 -6 -7

-9 -8 -6 -4 2 6 0 -4 -6 -7 -8

-9 -7 -4 0 8 14 7 -1 -4 -6 -7

-7 -5 -2 5 16 26 15 5 0 -3 -7

-7 -.4 0 7 25 47 28 8 1 -3 -6

0 5 II 21 57 100 57 21 11 5 0

-6 -3 1 8 2t 47 25 7 0 -4 -7

-7 -4 -1 5 15 26 16 5 -1 -5 -7

-7 -6 -4 -1 7 1"4 8 0 -4 -7 -9

-8 -7 -6 -4 0 6 2 -4 -6 -8 -9

-7 -6 -6 -4 0 5 2 -3 -6 -7 -7

Center 11xII Autocovariance matiix (c10O)
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Table 8. Key statistical parameters for the original image of
Los Gatos/mountains.

First-order moment (mean) = 78.9999

Second-order moment (variance) = 749.8423

Third-order moment = 391.2464

Fourth-order moment = 1049415.4249

Skewness = 1.905E-02

Kurtosis = 1.8664

65 66 67 68 69 70 70 69 68 67 66

66 67 68 69 71 72 72 71 69 68 66

66 68 69 71 74 75 75 73 71 69 67

67 68 71 73 77 80 79 75 72 69 67

67 69 72 75 82 89 84 76 72 69 67

68 70 73 77 89 100 89 77 73 70 68

68 70 72 76 $4 89 82 75 72 69 67

67 69 72 75 79 80 ?7 73 70 68 66

67 69 71 73 75 75 74 71 69 68 66

67 68 70 71 72 72 71 6, 68 67 66

66 67 69 69 70 70 69 68 67 66 65

Center 1lx'l Autocovaria¢ce matrix (x1O0)
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Table 9. Key statistical parameters for the 3- by 3-demeaned image of
Los Gatos area.

First-order moment (mean) = 0.4445

Second-order moment (variance) = 68.8058

Third-order moment = 165.3608

Fourth-order moment = 20367.5595

Skewness ='0.2897

Kurtosis = 4.3021

1 2 1 1 1 2 1 1 1 1 0

-1 -1 -1 -3 -3 -1 -3 -3 -1 -1 -2

1 1 1 1 1 6 3 2 1 1 1

1 0 2 -1 -9 -2 -5 -2 1 0 0
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Center 11xil Autocovariance matrix (xlO0)
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Table 10. Key statistical parameters for the 5- by 5-demeaned image of
Los Gatos area.

First-order moment (mean) = 0.4803

Second-order moment (variance) = 125.1046

Third-order moment = 354.4667

Fourth-order moment = 64869.2644

Skewness = 0.2533

Kurtosis = 4.1446

1 1 0 -1 0 1 1 0 0 1 0

0 0 -1 -3 -2 2 0 -2 -1 0 -1

0 1 -1 -6 -4 2 0 -4 -2 0 0

-1 0 -6 -17 -14 -1 -7 -14 -7 -1 -1

-1 0 -7 -19 2 37 11 -16 -8 0 0

2 3 -3 -12 38 100 38 -12 -3 3 2

0 0 -8 -16 11 37 2 -19 -7 0 -1

0 -1 -7 -14 -7 -1 -14 -17 -6 0 -1

1 0 -2 -4 0 2 -4 -6 -1 1 0

-1 -1 -1 -2 0 2 -2 -3 -1 0 0
1 0 1 0 0 1 1 0 -1 0 1 1

Center lIxil Autocovariance matrix (xlO0)
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Table 11. Key statistical parameters for the 7- by 7-demeaned image of
Los Gatos area.

First-order moment (mean) = 0.4892

Second-order moment (variance) = 156.9263

Third-order moment = 466.5482

Fourth-order moment = 98783.6512

Skewness = 0.2373

Kurtosis = 4.0113

1 0 -2 -3 -1 1 1 0 -1 0 0

0 -2 -6 -7 -5 0 -1 -4 -5 -3 -1

-1 -5 -11 -13 -7 0 -2 -8 -10 -5 -1

-1 -6 -13 -12 -2 10 5 -8 -12 -6 -1

-1 -6 -13 -8 19 49 27 -5 -12 -6 -1

1 -3 -9 -2 49 100 49 -2 -9 -3 1

-1 -6 -12 -5 27 49 19 -8 -12 -6 -1

-1 -6 -12 -8 5 iC -2 -12 -13 -6 -1

-1 -5 -10 -8 -2 0 -7 -13 -11 -5 -1

-1 -3 -5 -4 -1 0 -4 -7 -6 -2 0

0 0 -1 0 1 1 -1 -3 -2 0 1

I * Center I1x11 Autocovariance matrix (x100)
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